一、引言
自2022年11月30日ChatGPT正式发布以来,生成式人工智能在短短不到两年的时间内,实现了从开放式文字对话交互到文生图、文生视频,再到多模态交互的人机互动技术的飞速突破,其发展速度远超人类对其的思考与应对速度。这种强烈的不确定性和未知性,促使人类愈发重视人工智能的迭代及其引发的社会变革。教育,这个历来被视为慢变量且最为稳定的领域,如今却被广泛认为是最直接、最快速受到人工智能影响乃至冲击的领域之一。因此,秉持理性开放、客观严谨的态度,结合唯物史观视角,审视和分析人工智能与教育变革的真实发展水平,以及二者之间的内在关联和作用机制,将为人工智能赋能教育高质量发展提供基础性的观点和视角。
二、理性看待当前生成式人工智能发展的水平
以ChatGPT为代表的生成式人工智能凭借其强大的自然语言处理能力,通过开放式对话的方式完成信息检索、问题解答、内容创作、代码生成等复杂任务,其能力越发接近人类智能,甚至是对人类智能的扩展和部分替代。目前的“智能涌现”得益于数据的丰富、算力的提升、开源环境的活跃和多模态大模型的优化等的共同推动。但究其本质,它并不是一个新技术,仍然是人工智能发展过程中的阶段性产物,尚未在技术层面上发生突破性的质变。人工智能发展的历史虽然不长,但如果要客观评估当前人工智能发展的真实水平和未来趋势,需要将当前技术爆发的奇点置于人工智能发展历史和科技革命的脉络中去思考,才能勘破人工智能对教育的影响与挑战。
(一)人工智能发展的三个阶段
1950年,著名的图灵测试标志着人工智能的伊始。1956年,达特茅斯会议正式提出了“人工智能”这个概念,标志着人工智能学科的诞生。历经近70年的发展历程,人工智能学科内部的研究领域经历了多次分化与融合。在历经了因应用不充分、算力受限以及资助匮乏所导致的两次著名的“人工智能寒冬”之后,如今,该学科再次迎来了突飞猛进的发展阶段。
按照智能程度来划分,可将人工智能分为计算智能、感知智能和认知智能三大阶段。第一个阶段是计算智能(Computational Intelligence)阶段(1950年—2000年),即机器对信息进行存储和计算。第二个阶段是感知智能(Perceptual Intelligence)阶段(2000年—2021年),即机器通过传感器捕获到物理世界的信号,理解一些直观的物理世界,高效地完成“看”和“听”的相关工作。第三阶段是认知智能(Cognitive Intelligence)阶段(2022年至今),即机器具备了像人类一样的思考和学习能力,并且能够自主做出决策并采取行动。这一阶段主要是以ChatGPT的发布为标志。但科学界普遍认为,人工智能尚未到达到这一阶段,目前仍处于探索初期。
(二)人工智能发展的三个趋势
在人工智能发展的历程中,主要存在两条路径:一条是通过符号推理,以模型学习驱动的数据智能,称为“符号主义”(Symbolicism),主张人工智能应该模仿人类的逻辑方式获取知识。另一条是通过神经网络,以认知仿生驱动的类脑智能,称为“连接主义”(Connectionism),奉行基于大数据和训练学习知识,主张模仿人类的神经元,用神经网络的连接机制实现人工智能。在人工智能发展的历程中,符号主义与连接主义两大流派经历了兴衰交替的过程,每次的兴盛都是不同的技术路线和发展模式发挥了重要的推动作用,不仅塑造了人工智能的理论基础和技术实现方式,也反映着科学家们在理解和模拟人类智能方面的不懈努力。随着人们对人工智能认知的成熟度越来越高,“连接主义”的发展路径进步速度将会越来越平缓,而“符号主义”将会再次兴盛。即便是连接主义的代表人物杨立昆、李飞飞、Geoffrey Hinton等人也都表达过当前的技术路线无法制造有感知能力的AI的观点。基于此,本文初步判断人工智能未来发展有以下三大趋势:
一是从认知大模型向多模态大模型演进。传统的AI模型专注于处理来自单一模态的信息,主要侧重于理解和生成自然语言。而多模态大模型可以处理文本、图像、音频、视频和代码等多种数据类型,以促进内容合成任务的完成并整合多种信息源。人类智能和学习进化是天然多模态的,人拥有眼、耳、口、鼻、舌、肢体,人工智能的学习也可以更加还原人类学习多感官触发的真实情境。
二是从通用大模型向“大小联动”深化应用。AI模型的算力增长、算法效率优化呈现新“摩尔定律”,模型性能随着模型规模、数据规模和算力规模等因素的增大而提升,呈现出幂律分布的特征,已成为大模型走向行业深度应用、创造价值的实际阻碍。小模型可以通过知识蒸馏从大模型中学习。同时,小模型又可以反哺大模型,提升大模型的训练精度。因此,大小模型协同联动,才是降低训练成本和应用成本,提升灵活性、适用性和效率的有效方法。
三是从语言智能到具身智能(Embodied AI)实体转向。在现有的大模型应用中,多是在原有流程中嵌入AI工具,使其效率提高,并没有在底层逻辑和原生层面上产生具有创新价值的应用。脱虚向实的转向,为开发和应用拥有自主性和自适应性的人工智能体(AI Agent)提供了机会。要想创建一个能够在真实世界中工作的人工智能体,仅在文字环境中训练是不够的,必须具备对真实世界物理属性的感知能力。以GPT-4o为代表的生成式人工智能技术,不仅可以实现数字空间和物理空间的人机交互,而且还能提供情绪价值,这也表明情感计算是人工智能未来研究的重点方向之一。
(三)人工智能发展的现实水平:通用人工智能与人类智慧仍有质的差别
当前,人们对人工智能可以提供情绪价值、认知机制、协同价值的交互水平的惊叹,主要源于人们对它初始的预期较低,仍停留在固定、机械的机器人对话或Alpha Go人机围棋大战阶段。事实上,现阶段人工智能的真实发展水平距离通用人工智能还很远,仍与人类有很大差距,有质的差别,特别是在高阶认知和社会情感方面。
朱松纯院长在2024年全国两会“委员通道”接受采访时指出,“通用人工智能的‘通用’,在学术上有特定的含义。一般来说,在日常的物理和社会场景中,人工智能要满足三个基本条件:第一,它必须能够完成无限的任务,而不是像过去那样只能完成人定义的有限几个任务;第二,要在场景中主动地、自主地发现任务,做到‘眼里有活’;第三,它要有自主的价值来驱动,而不是被动地被数据所驱动”。当前,尽管ChatGPT、Claude-3、文心一言、讯飞星火等生成式人工智能应用在国内外被公认为较为成功,但它们仍未完全达到通用人工智能的标准,也不具备与人类等值的能力。它在数据处理、记忆、基于组合的创造力、速度和精确度等基础认知方面远超人类,但缺乏人类的情感理性、价值体系、认知和推理能力以及从0到1的创新创造力。大模型在模拟真实世界方面,不管是通过外部信息编码,还是依靠内在的第一性原理(即尺度定律,Scaling Laws),都有显著的不足,表现在强烈依赖数据、模型不可解释、缺乏常识理解等方面,如果能在未来几年内解决这些问题,那么大模型的智能水平有望进一步提升,从而更好地融入社会应用。
三、生成式人工智能在教育变革中的技术限度
目前,生成式人工智能虽然仍属于弱人工智能,但是它的迭代速度和表现水平已经远远超出我们原来的预期。从教育的视角出发,分析生成式人工智能的技术限度,将打破以往技术发展与教育变革研究的宏大叙事或微观论证的局限性,以复杂性思维来科学分析、理性质疑人工智能影响教育的当下与未来。发展人工智能、训练大模型与教育孩子具有同构性。本文将着重以教育的要素和环节为逻辑脉络,从结构对比、逻辑对比、符号编码、内容分析、交互机理、培养模式六个方面展开论述。
(一)结构对比:大模型与大脑
所谓人工智能,实质上是对人脑组织结构与思维运行机制的模仿,是人类智能的物化。让人类的心智在计算系统中重现,对大脑的模拟是其中的关键。GPT-3的大语言模型已经具有1750亿个参数,GPT-4则达到1.8万亿个参数,一次的训练成本为6300万美元。在语言智能的发展过程中,模型功能越来越强,泛化能力越来越好,任务解决能力也就越强。大模型试图通过不断增加参数的数量,来实现最大可能地模拟人类大脑的神经元,以此实现接近人类智慧的复现。但人类大脑中有数以亿计的神经元,神经元之间还有连接的突触,人脑大概有800~1000亿个神经元,它们之间的连接突触数目在100万亿。神经元通过电信号相互通信,组成了复杂的网络,直至今天,人类也未完全了解其运行原理。冯·诺意曼早在《计算机与人脑》中就提出,“同样容积的神经元比人造元件能完成更多的运算,能同时处理更多的信息,记忆容量也大得多,每个神经元的准确度较低,但其综合后的可靠性比较高”。也就是说,如果人脑是有机联结的,那么人工智能就是机械联结的,其内在的丰富性和复杂度不可同日而语。按照计算机学科的发展趋势,再过几年,大模型的参数就有可能达到人脑百万亿级的规模。根据幂律定律可知,合理地分配模型参数和训练数据大小,可以在有限的预算内或者预期的计算速度内,尽可能获得效果优良的模型。但模型参数与模型智能程度不是简单的线性关系,大模型和人脑的感知、认知、推理、创新的机理并不一样。因此,一味地追求模型参数并不能实现完全模拟人类智慧的性能,也未必是大模型未来的发展趋势。
(二)逻辑对比:概率推理与概念推理
概率推理和决策理论为人工智能系统提供了重要的思维方式和决策依据。通过建立贝叶斯网络和使用强化学习等技术,人工智能系统能够利用过去的经验和观察结果进行决策,提高决策的准确性和效率。因此,目前基于概率推理的人工智能存在先天的技术局限。
一方面,人工智能基于概率推理,人类智慧基于概念推理,二者之间有质的区别。概率推理是基于已有的信息和数据进行计算,由此获得最大的可能性。概念推理,属于形式逻辑,是基于概念——这一人类思维活动的抽象符号化产物,通过语言表示对某些实体或现象的理解、归纳或分类,反映人们对于事物的认知和理解的高阶思维形式。在计算机语言没有突破冯·诺意曼结构和二进制逻辑时,它把所有的运算存储最后都变成一种加减的关系,仍然是在低阶维度上的无限展开。生成式人工智能尚未突破概率推理的计算模式,只不过是在大数据、大算力、大模型的支撑下,加之人类反馈强化学习(Reinforcement Learning from Human Feedback,RLHF)使得机器根据不确定的信息做出决定时,进行的推理实现了最大概率的可能性和最接近人类思考的结果。大模型无法运用一套算法解决各种问题,人工智能只能应对确定性指令。但人脑可以面对不同问题场景,可以同时执行不同任务,任意切换,从而应对不确定性。由此可见,人工智能目前停留在逻辑推理、概率推理、因果推理的低阶思维阶段,尚无法展现高维的人类智慧。
另一方面,生成式人工智能很难突破线性的、片段的因果逻辑链,也无法根据多样性的社会文化与伦理,实时生成真实、具体的实践内容。但这并不代表它生成的内容不具有创造力,恰恰是由于缺乏逻辑体系、伦理规范的约束和实践检验而“太富创造力”,经常导致“知识幻想”的情况发生。从工程实践的角度来看,生成式人工智能完全可能会产生我们意想不到的智慧。但从知识生成的实效性来看,生成式人工智能的知识创造是通过对过去的大数据进行训练实现概率推理,仿佛是“用后视镜在开车”。麦克卢汉曾将“后视镜效应”生动地解释为“借助固有的经验解决问题的方法,透过后视镜看现在,我们倒退着步入未来”。这与人类真实的教育场景还有着本质差别。孩子的教育、人类的学习,都是在真实的师生互动或实践劳动的情境中,边行动、边建构中培养素养,是对人类智慧结晶的科学知识体系和当下现实生活中不断产生的新经验的结合。
(三)符号编码:语言编码与隐性知识
语言是人类特有的一种符号系统,是以语音为物质外壳,以语义为意义内容的词汇材料和语法组织规律的体系。语言本身就是一种编码。因此,教育的内容能否被编码和解码,成为“可说”与“不可说”的关键区分。1958年,迈克尔·波兰尼在《人的研究》一书中最早提出,人类的知识分为显性知识和隐性知识(也称缄默知识)两种,通常被描述为知识的,即以书面文字、图表或数字公式加以表述的,只是一种类型的知识;还有一种知识是不能系统表述的,像我们在做某事的行动中所拥有的知识。他指出,与显性知识相比,隐性知识的重要特征在于:第一,就是能通过语言、文字或符号进行逻辑的说明;第二,就是不能通过学校教育、大众传媒等进行传递;第三,不能加以“批判性反思”。
由此可见,以自然语言理解与处理、机器学习为核心的人工智能的发展,其核心在于可编码、可建构逻辑的语料及其数据信息。大语言模型的智能正是基于语言文字可以被记录、编码、传播的显性知识,但作为另一种类型存在的隐性知识却被忽略了。因为各种类型的编码在内涵表达和意义建构上都具有一定的局限性,文本表达的有限性限制着多模态大模型的智能程度的发展,由于多次编码及其转化会使信息多重过滤和衰减。正如维特根斯坦所言,“语言给思想穿上了衣服,从这件衣服的外表形式人们不能推断出它所遮盖的思想的形式”。语言是人类思维和交流的工具,但语言的表达能力是有限的,无法完全捕捉和描述现实世界的复杂性。语言既是思维的脚手架,也是思维的桎梏。而在人类的学习和进化发展中,往往是隐性知识所占比例更大,意义更为重要,也更具挑战性,如分辨光谱上的颜色、用手感觉材料的颗粒度等非语言类的知识与技能。
人工智能面对原理类知识、程序类方法、价值类知识的力不从心;面对生成性教学、情感性教学、实践性教学的无能为力。这类知识和教学不易“言传”,更适合“身教”,只有在做中学,在丰富、复杂、精密的多感官互动中学,才能在身、心、脑、体之间建立真正的联结。另外,即使把经验用语言文字表达出来,但对于接受者来说,它也失去了大部分情境信息和背景信息。当接受者以自己的角度来理解时,它已经丧失了所有的精微之处(相对于表达者而言)。因此,以大语言模型为底层核心技术的人工智能,其实只是注入了人类可以用语言文字或者其他符号编码、计算的显性知识,其基于自监督的语言模型无法获得关于真实世界的知识,其本质是“压缩”。
(四)内容分析:海量数据与高质量数据
尽管科学研究领域和市场行业人员对于人工智能领域的诸多问题尚未达成明确的共识,但对数据质量是下一阶段大模型能力涌现的关键似有共识。在大模型的生产关系中,数据是生产资料,算力是生产力,算法是生产工具。
以ChatGPT为代表的生成式人工智能是劳动密集型、技术密集型和资本密集型技术与产业的结合。原因就在于绝大部分的算力都用在预训练上,主要用于数据收集与清洗;除此之外,细颗粒度、高质量的数据标注也是人力集中的重要工作,而大量的基础工作都是为了高质量数据的获取。
关于数据量(Training Tokens)和模型参数量(Parameters)对于模型的影响,OpenAI于2020年曾通过扩大模型参数的方式,提升了大模型的智能水平。但最终被DeepMind得出的结论改变,即在有限算力资源的情况下,更多、更好的训练数据比一味提升模型参数规模更重要。
在我们的传统认知里,普遍认为我国在人工智能发展的新浪潮中具有海量数据的比较优势。但现实并非如此,特别是在教育领域里,高质量的可用数据问题更为突出。虽然我们有着全世界最大规模的教师和学生数量,并且他们还会在日常的教育教学管理中源源不断地产生新的数据,但实际上目前可用的高质量数据主要来自书籍、新闻、科学论文等静态沉淀的专业文本。这些数据对于大模型的优化和深化应用,如从大模型走向行业垂类模型,是远远不够的。因为互联网可获取的免费公开数据缺乏深度和精度,无法满足专业性强、精准度高的教育垂类模型。虽然我国已经拥有了海量的教育大数据,包括多模态的教学数据,但其中高质量、结构化、可计算的有效数据并不多。主要问题在于,数据标准不全面和不统一、数据采集覆盖面窄、模型构建专业性不足、应用服务单一机械(主要聚焦于适应性教学、题库类)、开放共享尚未形成和隐私保护有待完善等。特别是教学环境、教学过程中的标准和数据,这些标准的缺失都极大地限制着教育大数据的发展和积累。因此,挖掘已有数据背后的价值,加强未来数据管理,明确行业标准,建立数据使用规则,确保大模型训练有充足、准确的专业数据,才是生成式人工智能赋能教育的基本前提。
(五)交互机理:强化反馈与教学互动
在信息处理上,基于人类反馈是大模型“智慧”提升的关键所在。人类反馈强化学习是生成式人工智能领域的新训练范式,它通过人类反馈来指导智能系统的行为。过去几年,各种大语言模型(Large Language Model,LLM)根据人类输入提示(Prompt)生成多样化文本,主要是依赖上下文的逻辑和概率推理,因此,存在一定的偏误性。但通过RLHF,在一般文本数据语料库上训练的语言模型能和复杂的人类价值观对齐,让生成式人工智能更具“人性化”。正是人类智慧的反馈与调优,使得人工智能更接近人类智慧。
课堂教学也是一个有目的、有方向的、完整有序的复杂信息传递系统,教学反馈作为贯穿教学过程的必要环节,教师可通过时时反馈以调整优化教学策略,从而适应学生的学习行为。对于教学反馈而言,准确性、针对性、指导性、激励性、适时性、多样性、交互性是其核心特征。由此可见,教学反馈与RLHF具有同样的执行机理。
(六)培养模式:多模态输入与全面发展
在信息输入上,多模态的信息类型是输入有效性和丰富性的前提条件。通过结合不同类型的数据,大模型可以更好地理解和预测复杂的现实世界问题。目前,大多数模型都是通过训练单独的模块,将不同模态转化为语言文本,然后将它们拼接在一起以达到近似多模态,不足之处在于没办法在多模态空间进行深层复杂推理。而原生多模态则在技术上更进一步,具有处理不同形式数据(语言+听力+视觉)的能力,一开始就在不同模态上进行预训练,利用额外的多模态数据进行微调以提升有效性。
正如教育领域中的具身学习理论,基于视觉、听觉、感觉、触觉等多感官的信息输入和学习者、技术、环境三者之间多模态交互的学习环境,实现大脑多区域的激活,通过深度学习的发生以达到最佳的学习效果。对于大模型的训练亦如培养模式的价值取向,即选择素质教育还是应试教育的问题。如果选择单一维度、单一模态的“刷题”强化训练,大模型在某些方面的智能会在短期内快速提升,但很快到达瓶颈。如果选择全面发展、多模态的素质教育,那么大模型的迭代速度较之前者会慢一些,但是智能程度的上限则会更高。因为通识是专识的基础,恰恰先发展通用认知能力,才有可能发展专业认知能力,大模型也是如此。教育领域更要谨防高分低能的“书呆子”大模型进入应用市场。
四、以人工智能撬动教育变革
人工智能不仅是科学问题,也是教育问题,更是社会问题。如果人类文明想要传承发展,那么主动面对人工智能是我们必须走出的一步。但总体而言,人们对于人工智能的影响,存在高估短期效果、低估长远效果的倾向。因此,必须从当前采取措施,客观理性地看待人工智能的发展并作出研判。当下,第三波人工智能的兴起不是来自学术界,而是来自企业界的催促和市场化的倒逼。从本质来看,这并不是人工智能领域发生了新的技术突破,而是随着教育数字化的普及和转型,时代发展的必然趋势和旺盛需求所催生的结果。
(一)人工智能对教育的影响
从长远来看,人工智能对教育发展的影响,应优先重点考虑以下三个方面:
一是价值理性。今天的教育者或许无法精准预测未来复杂交织的影响因素,特别是人工智能这个正在巨变的因素,促使群体智慧、人工智能、社交网络对人们决策的影响更为深度地融入了我们的生活。人工智能的能力主要来自人工智能学习的人类大规模数据,数据中有能帮助我们解决问题的关键线索和事实,也有人类社会中的偏见、歧视、敌对和仇恨。人工智能在没有伦理安全、道德框架约束时,学习人类数据的同时也学习了人性的弱点,人工智能向人类提供服务时,也潜移默化地隐含了偏见等。因此,有意识地培养受教育者形成适应未来社会的价值观和是非判断能力,使其无论面临多么复杂难测的境遇,都能用坚定的价值理性作出独立判断,并妥善地加以应对。
二是伦理道德。要重视建构机器智能高度发展后的社会伦理道德体系。目前,人工智能大模型在未来扮演的角色主要是三种:工具、伙伴或者敌人,不同的社会文化对它的定位也不尽相同。日本的“人工智能原则”强调,未来人工智能可能扮演社会的准成员,甚至是人类伙伴的角色;并规定,如果未来AI发展到准成员或人类伙伴阶段,它们需要遵守人类社会的伦理道德规范以及为人工智能制定的伦理道德规范。而在西方科幻电影和小说中,人工智能扮演了很多反派角色,是人类的敌人。人工智能大模型在未来究竟扮演何种角色,如何与人类和自然和谐共处,更好地辅助人类,都应率先思考。碳基生命的奥秘解密和在此原理基础上建立的人造智能体(硅基生命)是否会演化成为具有自主价值和生命成长性的机器体,也应该成为未来人工智能关注的方向。我们应该持有开放的态度,坚守人工智能为人类社会发展服务的初心,将其建立在人类伦理道德规约之下。同时,人类伦理道德体系也须随着文明形态的变化而实现相应的进步。教育的首要责任就是通过培养未来社会的合格公民,为建设面向智能社会的伦理道德体系发挥重要作用。
三是人才培养。在未来的智能社会中,人工智能体与人类、自然、社会是否能够和谐共生,不是取决于人工智能,而是取决于人类对待人工智能的认知与态度是否能够加速演化。因此,教育要转向对受教育者创新思维等高阶能力的培养。未来社会需要大量具备人机协同能力的高水平人才,创新思维、计算思维和情感能力等高阶能力将成为人类的关键竞争力。为了应对人工智能时代新的挑战,各国应重新审视学校教育体系的价值,反思应“培养什么人”以及“如何培养”的问题。人们认识到,与以往任何历史时期相比,当下都更需要凸显人的价值和凝聚人的力量,以抵御不安和恐惧,区分人与机器、人与人工智能的差别。面对充满不确定性的后真相世界,教育不应只关注教会学生什么,而应帮助他们摆脱“工具人”,塑造“完整人”,激发他们的主体性和内驱力,培养他们独立思考和可持续发展的自主学习力。“五育”并举,全面发展,都与人的情感紧密相关。因此,培育机器智能无法具备的社会情感等是未来教育的关键内容和目标。
从中短期来看,人工智能给教育带来了六个方面的影响。一是影响培养目标。为应对人工智能带来的长远挑战,教育要根据未来社会需要调整人才培养目标,以发展学生的核心素养为导向,培育学生终身发展和适应社会发展所需的正确价值观、必备品格和关键能力。二是影响学习方式。人工智能可以助力实现个性化的学习路径,提供智能化助学辅导,还可以通过虚拟现实技术和增强现实技术为学习者营造更逼真的学习情境,模拟那些无法在真实世界呈现的科学实验,等等。三是影响教学方式。通过人工智能,人类可以消解大规模教学和因材施教在实践中的两难困境,兼顾促进教育公平和提升教育质量,促进实现更好的教与学。四是影响师生关系。以前教师是课堂上的学术权威,而现在的学生使用ChatGPT、Sora等工具,即时获取的知识可能比教师能提供的还多。当师生关系不再单纯围绕知识传授而构建时,如何更好地发挥引导、激励和示范作用,如何重新诠释言传身教、保持师道尊严,对教师来说是一种挑战。五是影响教育内容。教材中的机械记忆内容将大幅度减少,给深度学习、认知创新和实践性学习留出了空间。另外,要注意防范通用人工智能潜在的意识形态风险。预训练数据蕴含的意识形态偏向将潜移默化地影响受教育者。六是影响教育管理。教育管理中的人工智能应用已相对成熟,技术促进了教育管理高效化、精细化、科学化,在我国各地已形成诸多优秀案例,积累了丰富经验。同时,还需要继续探索教育管理数据的集成应用,提升数据治理水平,并加强数据安全监管。
(二)教育如何积极应对人工智能的挑战
当下,生成式人工智能的诞生,已经将技术作用的对象从人的体力向人的脑力转移,从人的身体向人的智慧、意识延伸。人类作为主体性存在的独有特征——思维方式都将受到挑战。我们必须重新思考教育,使其向促进人类意识的觉醒和技能的提升转型,以此维护人类的价值与自由。当前,生成式人工智能依靠数据驱动的实现方法是不是最优路径,有待进一步确认。大模型基于概率推理的天然技术缺陷和资源损耗的制约,一味地追求参数的增多及模型变大是没有价值的。当数据驱动的红利消耗殆尽时,是否存在第三条道路,是否会产生新的研究范式或技术路线。对此,我们应该持有质疑和理性的态度。
从大处着眼,从小处着手。在教育生态体系的复杂元素中,从以下三个问题入手最为紧要,也最具指导意义。第一,当我国传统教育优势将被人工智能大幅削弱时,更应注重学生哪些素养与能力的培养?第二,随着生成式人工智能技术的发展,如何处理新型的师生关系?第三,人工智能改变了知识生产和传播的方式,在此背景下,教学模式与教育信息化时代有何质的不同?
1.注重学生的高阶思维培养
人工智能时代,育人目标和模式从知识本位、学科本位走向素养本位,即查即用类知识的习得将更多由人工智能辅助完成。学生接受的不仅仅是海量的确定性信息,更是真假难辨、良莠不齐的生成式内容,这对提高学生的数字素养与技能这一未来必备的基本素养提出了要求。如果说信息化时代,我们要求学生要有发现问题和解决问题的能力,那么人工智能时代,我们则要求学生具有提出问题的能力,甚至要提出有质量、有逻辑、开放性的问题。提出好的问题,才是人类与人工智能良好协作的开始。目前,生成式人工智能生成的内容大概是人类常识的均值水平,如果想让它接近或达到峰值水平,则需要良好的提示词(Prompt)。这其中就蕴含了比较、分析、应用、迁移、综合、评价等高阶思维,而传统的记忆、检索、计算等初级思维则逐渐被人工智能替代。
科技将人的一部分功能强化、延伸,就会相应地导致另一部分功能的弱化、萎缩,造成人类智慧懒惰(Intellectual Laziness)。脑神经科学和相关实验多次证明,历史上的技术和工具在不断地塑造着人类的大脑,脑神经元之间的突触连接会根据我们的思维习惯重新组合,互联网时代让信息过剩、生成式人工智能让知识不断创造,但是人类的思考会变得浅薄。互联网和多元刺激的富媒体可以让大脑的前额叶区不断兴奋,但是负责深度思考的海马体却在此过程中未被激活,这就会鼓励人类个体的智慧懒惰,因为好奇心和探索的愿望是需要鼓励和奖赏的,而“走捷径”是人类与生俱来的本性,这可能会使人类经历集体降智。当下,人工智能给我们带来的巨大威胁并不是代替人类的工作,而是人类会陷入人工智能的强大功能“陷阱”,习惯于机器提供的解决方案,而放弃自主思考。人类一旦习惯了轻松获得,不再进行独立思考,完全把思考交给机器,交给人工智能,那将是对人类最大的威胁所在。
因此,教师需要回归教育初心,擅用互动启发式教学法,更加注重师生之间、生生之间的问答互动,重点在于学生的思维发展、情感发展与道德发展,而不仅仅是课堂教学流程上的效率提高或者教学内容的容量增大,避免其误用导致教育内卷的加剧。这就要求教师不断提高数字素养与技能,了解生成式人工智能的内容生成和输出的基本原理,在教育教学中客观理性地对待和适度应用。
当下,我们再谈“互动启发式教学法”,是智能时代对教学法的一种复归。这是对中西方教育理念的一种创新性实践。苏格拉底提倡的“问答式”教学,是指他在教授某个知识点时,并不是直接告诉学生,而是先向学生提出问题,让学生回答,如果学生回答错了,他也并不直接纠正,而是提出另外的问题引导学生思考,从而一步步地得出正确的结论。苏格拉底将其称之为“产婆术”,其教学法则是为思想接生,是引导人们产生正确的思想。孔子在《论语·述而》中的“不愤不启,不悱不发。举一隅不以三隅反,则不复也”,强调了其启发式教学的思想和方法。朱熹在《论语集注》中对此解释为“愤心求通而未得之意,悱者,口欲言而未能之貌。启,谓开其意。发,谓达其辞。”在朱熹看来,愤悱之境是认知水平,而启发则是开意达辞的方法。简言之,我国优秀传统文化中的启发式教学,更注重在学生主动思考的基础上进行问答式的教学。
当生成式人工智能走进教育现场时,融合中西文化精髓的“互动启发式教学法”,更加注重“启”和“互动”,即通过师生双向有效提问的互动方式,启发学生进行深度学习,培养学生的高阶思维。其特征是问题化、强交互、强反馈,只有真正触发学生深度思考的问题并及时给予正向反馈,才能刺激大脑皮层,促进大脑活跃。而当学生完成某个预期目标后,大脑会产生奖励系统,同时分泌多巴胺、去甲肾上腺素、内啡肽,让学生从精神上感受到愉悦和快乐。学生自主学习的真正发生,是脱离物质奖励和功利目的的单纯的学习专注,具体包括三个特点:第一,教师的启发工作必须建立在学生积极思考的前提下,学生的思考可以通过学生提出问题的方式来体现;第二,从传统课堂教学中的教师单向提问为主,转变为多主体交互、多轮次问答的师生、生生教学互动;第三,教师的教学设计目标要合理,遵循“最近发展区”原理,并强调及时的正向反馈。互动启发式教学法并不是某一种具体的教学方法的代名词,而是一种教学理念,一种教学的指导思想,它可以体现为一种教学方法,也可以是多种教学方法的整合。
2.着力构建新型师生关系
教师如何适应新型教学关系中的角色,教师如何开展人机协作教学,以及如何关注师生的数字道德问题等,都是构建新型师生关系的重要内容。通过将优秀教师的素质结构进行解构,并将这些素质通过预训练模型赋能机器,力求打造与优秀教师“同质”的虚拟教师。传统“以教为主、以师为主”的师生关系会被弱化甚至消失,同时“以学为主、以生为主”的新型师生关系会逐渐产生。单向传输的二元主体的师生关系,将转变为多向互动的“师—机—生”三元主体关系,形成新的育人生态,将“机”视为新主体的原因就在于,其智能性、交互性的不断发展迭代了传统机器教学的机械化、程序化。
教师将从“知识的守门人”转变为“学习的编舞者”。首先,应更加注重对学生情感、态度、价值观的引导。未来新型的师生关系需要更具有情感性和互动性,未来的人类教师需要学会和机器共处,让“机师”为我所用,需要更具有亲和力和共情力,能够走进学生的心灵世界,需要将教育变成“艺术”。其次,逐渐成为知识生产者、学习促进者和成长引导者。教师将越来越起到导师般的作用,引导学生寻找正确的学习目标、科学的学习方法与高效的学习路径,提醒或约束他们形成自律的学习习惯,为学生的综合实践与社会体验提供情感支持。让人师与“机师”的协作在各自优势发挥的基础上充分展开。人师的优势主要包括对学生社会情感能力的支持,教师自身的世界观、人生观与价值观对学生的影响与塑造,对不同领域的知识进行跨学科交叉融合的能力等。智能技术相比以往信息技术所特有的智能优势,可以解决学习者学习需求差异化的识别困境、认知障碍内隐性的辅助困境和学习路径多样化的适配困境,使得精准教学的实现成为可能。因此,“机师”的优势在目前主要集中于知识的大量储备、近乎无限量的计算和对解决问题范式的记忆,并且在交互过程中永远“耐心”且个性化地对待每个学生。
3.创新探索智能时代教学模式的变革
如何科学认识当前人工智能技术的发展及其对教育的影响,需要教育界进行深入研究。目前的技术还没有成熟到可以系统、全面、准确地应用于教学当中,过度强调人工智能技术在教育教学微观环境中的应用,恐怕还为时尚早。教师首先要认识到当前技术的局限性。相对于人类智慧而言,生成式人工智能目前并没有关于“能力界限”的判断,对于无法回答的问题,它会依据概率给出答案,这其中可能往往包含着错误信息。师生都需要安全、有效和恰当地使用人工智能,教育应帮助每个学生为用好生成式人工智能技术或未来其他技术做好准备。在这种情况下,教师应该注重引导学生加强对生成式人工智能技术的本质认知与初步应用,强调在理性判断的前提下与新技术“接触”。
再者,人工智能教育较之教育信息化教学,有着质的差别。在教学中,师生与生成式人工智能的思维链式对话是与过去的计算机辅助教学和使用数字化教育资源平台等完全不一样的体验。它在教育主体、资源供给、内容生产、交互方式上都有质的不同,但并不是在教育教学流程中某个环节的效率提高、某个资源的供给丰富,而是在教育信息化基础上的一次迈向教育数字化、智能化的系统性跃迁,是驱动教育在底层逻辑上的创新和对教育本质的更好实现。例如,教师在教学过程中,可以通过生成式人工智能技术产生一些必要的图文故事或视频等内容开展探究活动,提升其教学设计能力与教学组织能力,增强课堂互动性,但并不是把新技术作为一种主要教学手段。人工智能技术是深化教育数字化转型中的过程性路径和重要的驱动力,因此,要加快数字时代的教育新形态“五新”体系的转型与应用,它蕴含公平、包容、可持续、终身化的教育理念,塑造“人人皆学、处处能学、时时可学”的高质量个性化终身学习体系;构建以数据驱动大规模因材施教为核心的教学模式;创新素养导向、能力为重的教育内容;推进管理精细化、服务精准化、决策科学化的教育治理。通过智能技术突破现有路径依赖,真正系统性地赋能教育变革,实现教育高质量发展。
来源|《电化教育研究》2024年第8期
作者|王学男(1984—),中国教育科学研究院数字教育研究所副研究员,博士,主要从事教育学原理、教育政策研究。李永智为通信作者,中国教育科学研究院院长。
(免责声明:本文转载于《中国教育科学研究院官网》,版权归属于原作者,文中观点与本栏目无关,如涉侵权,联系立删!)